
International Journal of Heat and Mass Transfer 48 (2005) 4562–4568

www.elsevier.com/locate/ijhmt
Detection of hot spot through inverse thermal analysis
in superconducting RF cavities

A. Aizaz a,*, R.L. McMasters b

a National Super Conducting Cyclotron Laboratory (NSCL), South Shaw Lane, MSU, East Lansing, MI 48824, United States
b Department of Mechanical Engineering, MSU East Lansing, MI 48824, United States

Received 16 August 2004; received in revised form 28 February 2005
Abstract

An inverse heat conduction problem in a superconducting radio frequency (SRF) cavity is examined. A localized
defect is simulated as a point-heating source on the inner surface (RF surface) of the evacuated niobium cavity. Liquid
helium acts as a coolant on the outer surface of the cavity. By measuring the outer surface temperature profile of the
cavity using relatively few sensors, the temperature and location of a hot spot on the inner surface of the niobium
are calculated using an inverse heat conduction technique. The inverse method requires a direct solution of a three-
dimensional heat conduction problem through the cavity wall thickness along with temperature measurements from
sensors on the outer surface of the cavity, which is immersed in liquid helium. A non-linear parameter estimation pro-
gram then estimates the unknown location and temperature rise of the hot spot inside the cavity. The validation of the
technique has been done through an experiment conducted on a niobium sample at room temperature.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A key component of the modern particle accelerator
is the device that imparts energy to the charged particles.
This is the electromagnetic cavity resonating at a micro-
wave frequency at very low temperatures where the
material of the cavity is electrically superconducting.
Thermal breakdown, or quench, is a phenomenon where
the temperature of part or all of the entire RF surface of
the cavity exceeds the critical temperature Tc, thereby
becoming non-superconducting, rapidly dissipating all
stored energy in the cavity fields. Temperature mapping
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of the outer surface of the cavity thus becomes an essen-
tial tool in the diagnostics of the performance degrada-
tion of the cavity. In practice, usually the temperature
mapping of the outer surface is accomplished using
several hundred arbitrarily spaced sensors to identify
the local hot spot on the RF surface. Due to the very
high sensitivity of the carbon sensors at 1.6 K, detection
of a temperature rise of 60 lK above ambient has been
reported by Padamsee et al. [1]. However, quantitative
estimation of actual temperature rise on the hot spot
has not been made in previous research. It is the purpose
of this research to quantitatively estimate not only the
location, but also the actual temperature rise of the
hot spot on the RF surface. In this paper, we shall
first present the mathematical model employed in the
ed.
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three-dimensional numerical technique. This is done by
performing a steady state analysis to determine the min-
imum number of temperature sensors, with suitable
spacing, required at a specific bath temperature to detect
a temperature rise of 60 lK above ambient. The numer-
ical data thus obtained shall provide sufficient informa-
tion to aid in employing an inverse heat conduction
technique to make estimates of the unknown parame-
ters, namely the location of the hot spot and the associ-
ated temperature rise on the RF surface. Comparing the
results of this program with the exact solution provides
code verification. Later in this paper, the information
obtained from the numerical experiment, along with
experimental data, provides not only the desired un-
known parameters, but also the validation for the code.
Face 3

x 

y 

z 

Typical sensor 

installation

Face 6

Fig. 2. The rectangular parallelepiped surface of ROI has a
heat source on face 1 and the sensors on face 2 are shown
placed arbitrarily where liquid helium cools to the desired
operating temperature. The x-axis is chosen in the direction
2. Numerical simulations

2.1. Model definition

The region of interest for the SRF 805 MHz cavity is
modeled as a rectangular parallelepiped 3-D surface, as
shown in Fig. 1. This section of the cavity is chosen to
be a representative region. A more detailed view of this
three-dimensional surface with sensors installed on the
outer (cooled) surface, is shown in Fig. 2. The sensors
are encased in an insulated housing to protect against
the direct cooling effects of liquid helium. The details of
the construction of the housing are given elsewhere [1,2].

2.2. Governing differential equation

From a typical order of magnitude analysis, the
transient time constant, known as Fourier number
Fo ¼ a0t

L2c

� �
, is quite large for niobium cavities even for

small times of several milliseconds (e.g. Fo for 1 mm
Fig. 1. Region of interest (ROI) on an elliptical superconduc-
ting 805 MHz cavity is modeled as a rectangular parallelepiped
surface with point heat source on the interior surface and
cooled by the liquid helium on the exterior surface.

along the thickness of the niobium metal.
thick Nb at 50 ms time interval is 775), and steady state
conditions are reached very rapidly. In this relation, a 0 is

the thermal diffusivity of the niobium in cm2

s

� �
, Lc, is the

thickness of the niobium in (cm) and, t is time in (s).

For this steady state condition, in the absence of any
source of internal heat generation inside the cavity mate-
rial, the heat transport equation in the cavity is de-
scribed by

o2T
ox2

þ o2T
oy2

þ o2T
oz2

¼ 0 ð1Þ
2.3. Boundary conditions

The boundary conditions on each of the six faces are
described with respect to the faces identified in Fig. 2.
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On face 1, zero heat flux (qjyÆz(except Pt.heat) = 0) is im-
posed except on the point of heating. At the point of
heating, user input is required to specify the heat flux.
Face 2 also has two different kinds of boundary condi-
tions, depending upon the location of sensors. The sur-
face on face 2 exposed to liquid helium has a
convective boundary condition, similar to the one de-
scribed later. However, the surface on face 2 exposed
to the sensor is given by

qjNb ¼ qjSensor
TNbðinterfaceÞ ¼ T SensorðinterfaceÞ

Though the insulated sensor housing is made of sev-
eral materials, the G-10 used in the casing of the sensor
(an epoxy filled fiber glass commonly used in the cryo-
genic industry) is assumed to have thermal properties
close to those of the epoxy and the carbon sensor. All
other faces, i.e., 3, 4 and 5, 6 are modeled as adiabatic
boundaries. On the sensor itself, a convective boundary
condition, as given below, is valid for the remaining five
sides of the housing.

qjsensor ¼ hjconv;HeDT

Here, hconv,He is the kapitza conductance of liquid
helium when it is below its lambda transition tempera-
ture, i.e., below 2.17 K. Though this quantity is highly
temperature dependent, for the purpose of small tempera-
ture differences (on the order of milli Kelvin), its value is
assumed to be constant and mainly dependent upon the
bulk liquid helium temperature. However, for experi-
ments above the lambda transition temperatures, i.e.,
THe > 2.17 K, liquid helium for the purpose of heat
transfer can be considered as an ordinary fluid [6]. The
value of hconv,He then depends upon the state of the pool
boiling liquid.

Although many commercial programs are available
to solve the Laplace equation, they do not provide the
degree of flexibility required for generating solutions
which could be used in an iterative scheme for non-
linear parameter estimation. Therefore, a custom-made
code is developed as part of this research that could
serve as a program subroutine in the overall parameter
estimation program.

2.4. Discretization of the differential equation

The discretization of the differential equation is done
using a second order central finite difference technique.
This discretized equation can be solved through the
successive over relaxation (SOR) iterative technique.
The final form of the equation is given as

T nþ1
i;j;k ¼ T n

i;j;k þx
1

k
faðT nþ1

i�1;j;k þ T n
iþ1;j;kÞþbðT nþ1

i;j�1;k þ T n
i;jþ1;kÞ

�

þ cðT nþ1
i;j;k�1 þ T n

i;j;kþ1Þg� T n
i;j;k

�
ð2Þ
Here, the superscript ‘‘n + 1’’ is the current iteration
number, ‘‘n’’ is the previously computed iteration
number and, c = Dy2Dx2, a = Dy2Dz2, b = Dz2Dx2, k =
2(Dx2Dy2 + Dx2Dz2 + Dz2Dy2). ‘‘x’’ is the convergence
acceleration parameter which varies between 1 and 2
and is determined through numerical experimentation.
Similarly, the boundary equations are developed from
discretization of the boundary conditions using the finite
control volume approach. One example of the algebraic
equations developed for the boundary conditions is ta-
ken from the interface boundary between the niobium
surface and the casing of the sensor housing, as shown
in Fig. 2.

T nþ1
i;j;k ¼ 1

k
a

2KNb

KNb þ KG-10

� �
T nþ1

i�1;j;k

��

þ 2KG-10
KNb þ KG-10

� �
T n

iþ1;j;k

�
þ bðT nþ1

i;j�1;k þ T n
i;jþ1;kÞ

þ cðT nþ1
i;j;k�1 þ T n

i;j;kþ1Þ
�

ð3Þ

Here, KNb is the thermal conductivity of niobium; KG-10

is the thermal conductivity of the G-10. Also, �i�, �j�, and
�k� are the usual indices for x, y, and z directions,
respectively.

2.5. Convergence

Since the numerical formulation of the �Laplace�
equation, along with its boundary equations through
the SOR technique gives a positive definite matrix, con-
vergence is readily ensured [3]. Grid refinement on the
code is done to a level that ensures the final form of
the solution is grid independent. The convergence crite-
ria are satisfied when less than a 0.1% change in all
parameter values is observed between iterations.

2.6. Numerical results and post-processing

As shown in Fig. 3, the highest temperature locations
on the cooled surface are the four corners where sensors
are installed because of the insulating effects of the sen-
sors. The heater simulates as a hot spot in this configu-
ration, symmetrically centered on face 1 in the �yz� plane
(see Fig. 2). Due to the relatively high thermal conduc-
tivity of niobium at low temperatures, heat generated
by a point source is conducted away within the metal
and a very low temperature rise is expected at the outer
surface of the cavity. Moreover, the rise in temperature
on the cooled surface to be detected by the sensors is
greatly influenced by the excellent cooling properties of
super fluid helium.

Fig. 4 shows the relationship between the sensor effi-
ciency and the sensor spacing for different thicknesses of
the niobium plate. Sensor efficiency here is defined as the
ratio of temperature rise on the cooled surface to the



Fig. 3. Program output showing the highest temperature locations at the four corners of the outer (cooled) surface on �yz� plane. Four
sensors are located at the four corners on the cooled surface and the heater is symmetrically located in the center of the RF surface.
Thickness of the plate is 4 mm.
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Fig. 4. Sensor efficiency as a function of sensor spacing for various temperatures and niobium thicknesses. Three solutions included at
each condition: CON3D (bare plate), the Code (insulated sensors), and FEM solution.
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maximum temperature rise of the hot spot on the RF
surface. Since the sensor efficiency is a function of the
distance between the sensors (sensor spacing), the sensor
efficiency calculations are repeated for each thickness of
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niobium plate, i.e., 1 mm and 4 mm, and for each value
of selected bulk temperature of liquid helium, i.e., 2 K
and 4 K. Code verification is done with the results ob-
tained through the exact solutions generated by
COND3D [4] without sensors and through the Kokop-
elli Finite Element Method program [5]. As shown in
Fig. 4, the results obtained from all three computer pro-
grams are in good agreement with each other, with max-
imum errors of 1% or less, and this only at very small
sensor spacings. From these plots, the effect of the pres-
ence of the sensors on the final solution of the problem is
seen to be nearly negligible. This is mainly attributable
to the relatively small sensor size (1 cm · 0.4 cm ·
0.3 cm) as compared with the overall dimensions of
the plate in the problem, which are on the order of tens
of centimeters.
3. Program validation

The validity of the model is shown by comparing the
results obtained from the program with the experimental
data. Since the magnitude and location of a heating
source in an operational cavity cannot be experimentally
verified, an experiment was performed at room temper-
ature with a known heat source to validate the method.
Six thermocouples as shown in Fig. 5, were used to re-
cord the temperature of the cold surface of a 4 mm thick
niobium plate.
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Fig. 5. Experimental setup to validate the computational model. Six s
heater and a sensor installed on the bottom surface.
A thin foil heater of 1.27 cm diameter with negligibly
small thickness (on the order of micrometer) is used to
act as the 2-D source of heating for the model problem.
The bottom surface, i.e., the heated surface, is then insu-
lated using sheets of G-10 material. An insulating tape is
used to bond the plate and the sheets together which also
provides insulation to the side walls of the niobium plate
to match the boundary condition as closely to those of
the model as possible. The error induced due to possible
heat leaks to the insulated G-10 and the boundaries is
estimated to be less than 3%. Also, the possible heat
leaks through the heater and sensor wires are estimated
to be less than 1% of the total heat input. The experi-
mental data obtained is then compared with the data ob-
tained from the program. As shown in Fig. 6, the two
results, i.e., from the experiment and the one computed
are in agreement with each other. As shown in Table 1,
the standard deviation of the difference between the two
is 0.045 K.
4. Inverse heat conduction calculations

To estimate the location as well as temperature of the
hot spot on the RF surface of the cavity, the inverse heat
conduction technique through non-linear parameter
estimation is employed. Here, the three desired parame-
ters are the unknown temperature at the heated niobium
surface and the �y� and �z� coordinates of the heater.
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Fig. 6. Sensor efficiency (U) shown as a function of radial
distance (r). The relationship obtained from numerical compu-
tation is compared with the one obtained from the experimental
setup at room temperature.
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From the definition of sensor efficiency, we know
that

UðrÞ ¼ T ðrÞi=Tmax ð4Þ

where U(r) is the sensor efficiency and is a function of
distance �r� given as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � yiÞ

2 þ ðz� ziÞ2
q

ð5Þ

Here, (y,z) is the unknown location of the heat source
and (yi,zi) is the known location of the sensor �i� with re-
spect to a rectangular grid system arbitrarily set over the
plate, T(r)i, is the temperature rise at a distance �r� mea-
sured by the sensor �i�, and Tmax is the unknown maxi-
mum temperature rise on the heated surface of the
plate, i.e., the temperature rise of the heater. In matrix
form this equation can be written as
Table 1
The difference between the actual temperature rise and the estimated
conduction technique

Verification of estimated parameters through inverse technique

Z (cm) Y (cm) Measured temp rise (K)

1 0 3.5
0 2 3.1
3 0 3
0 4 2.9
5 0 2.8
0 6 2.8

Parameter es

Max temp rise (K) 6.90
Z (cm) 0.222
y (cm) �0.278
½T i� ¼ Tmax½UðriÞ� ð6Þ

In this equation, as described above, Tmax, and the coor-
dinates (y,z) of the heater (which determines the value of
ri) are the only unknowns. Now if we have six tempera-
ture sensors installed on the top (cold) surface of the
plate to detect the heat produced by the heater on the
bottom (hot) surface of the plate, then each sensor shall
have an efficiency curve as a function of its location �ri�
away from the point of heating. Such a curve for each
sensor is obtained from iteratively using the direct com-
putation of the 3-D steady state program described
above, and using the fact that location of each sensor
is also known. Thus from the above procedure, we shall
have the following six equations, one for each sensor.

T 1 ¼ TmaxUðr1Þ
T 2 ¼ TmaxUðr2Þ

..

.

T 6 ¼ TmaxUðr6Þ

In this set of six equations, we have just three unknowns.
So we have an over-defined set of equations whose un-
ique solution does not exist. The unknown values (y, z
and Tmax) can be obtained using the functional form
of U(ri) as the direct solution. The three unknown
parameters are then found by minimizing the sum of
squares of the errors between the measured temperature
rise and the calculated temperature rise at each sensor
location. The estimation method utilizes finite difference
sensitivity coefficients with a step size of 0.1%. Specifi-
cally, the values of y, z, and Tmax are found which min-
imize S2 ¼

P6
i¼1ðY 2

i � T 2
i Þ where Yi represents the

measured temperature rise and Ti represents the calcu-
lated temperature rise above ambient. The convergence
criteria are satisfied when less than a 0.1% change in
all parameter values is observed between iterations.
temperature rise at each sensor location by using inverse heat

Estimated temp rise (K) Error

3.44 �0.06
3.11 0.01
3.04 0.04
2.89 .01
2.86 0.06
2.78 �0.02
Std. dev (K) 0.045

timated Experimental

6.9
0
0
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The close agreement of the two results, as shown in
Table 1, validates the use of the direct model and the in-
verse method. If the values of the estimated parameters
are then used and substituted back to calculate the tem-
perature rise detected by each sensor, the difference be-
tween the measured temperature rise from the sensor
and the calculated temperature rise is quite small with
a standard deviation of only 0.045 K.
5. Conclusion

An 805 MHz SRF cavity has been modeled to obtain
the temperature map on the outer surface of the cavity.
On post-processing of this mapped surface temperature
data, a relationship has been obtained between sensor
efficiency and the radial distance from the hot spot on
the heated surface, for different wall thickness of nio-
bium metal and for different bulk temperatures of liquid
helium. This relationship determines the maximum sen-
sor spacing allowed to detect a one-degree rise in the
temperature on the RF (heated) surface to give a rise
of 60-lK-on the cooled surface. The numerical model
for this work has been validated by experimental mea-
surements at room temperatures. The inverse heat con-
duction technique has been applied on the numerical
as well as experimental data to obtain the unknown ther-
mal parameters of the cavity.
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